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Nearly all content and images from Diego Ongaro and John
Ousterhout’s 2014 paper, In Search of an Understandable
Consensus Algorithm (Extended Version).
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L Abstract

m Raft is a consensus algorithm for managing a replicated
log.

m Equivalent to Paxos in operation, except more
understandable.

m Separates leader election, log replication, safety, and
reduces possible states.

m Easier to learn.
m Supports cluster membership changes.
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m Consensus algorithms allow a collection of machines to
work as a coherent group that can survive the failure of
some members.

m Paxos has been the primary consensus algorithm for too
long.

m Paxos is difficult to understand and implement.
m Raft’s key goal is understandability.
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Notable raft features

m Strong leader
m Randomized timeouts for leader election
m Membership changes
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m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Consensus algorithms

m should provide safety - never return an incorrect result.

m should provide availability - must work when a majority of
servers are up.

m should not depend on timing.

m can mitigate poor performance. A slow minority shouldn’t
be waited for.
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m 1970s - Jim Gray and others propose two-phase commit.
Vulnerable to partitions.

m 1980s - Three-phase commit. Not provably correct, has
problems.

m 1990s - Leslie Lamport tries to prove the properties of
what became Paxos is impossible, comes up with Paxos.
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m Paxos made simple - 2001

m The ABCD’s of Paxos - 2001

m Generalized consensus and Paxos - 2005

m Fast paxos - 2006

m Paxos made live: an engineering perspective - 2007
m Paxos made practical - 2007

m Paxos for system builders - 2008

[ ]

[ ]

Paxos made moderately complex - 2012

In search of an understandable consensus algorithm -
2013
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Brief aside - part 3

m Go To Statement Considered Harmful - 1968
m ‘GOTO Considered Harmful’ Considered Harmful - 1987

m "GOTO Considered Harmful" Considered Harmful’
Considered Harmful? - 1987

m On a Somewhat Disappointing Correspondence - 1987
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|—3. What's wrong with Paxos?

Paxos is broken into

m single-decree Paxos - goal is to replicate one log entry

m multi-Paxos - combines single-decree Paxos to decide a
full log.




Raft
L Introduction

|—3. What's wrong with Paxos?




Raft
leroduclion
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.



Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.



Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

m Paxos is symmetric peer-to-peer at its core (no leaders)

which is inefficient when a bunch of decisions need to be
made.



Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

m Paxos is symmetric peer-to-peer at its core (no leaders)
which is inefficient when a bunch of decisions need to be
made.

Is this actually a problem? Byzantine empires might say no.



Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

m Paxos is symmetric peer-to-peer at its core (no leaders)
which is inefficient when a bunch of decisions need to be
made.

Is this actually a problem? Byzantine empires might say no.

m Paxos is good for proving theorems about Paxos, but said
proofs matter little when real implementations can differ so
drastically.
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Understandability

m When faced with a choice, choose the easiest to explain.
m Subdivide problems
m Shrink state space

Nondeterminism

m Nondeterminism usually eliminated

m except where it makes the system simpler! (randomized
approaches)
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Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0
on first boot, increases monotonically)

votedFor candidateld that received vote in current
term (or null if none)

log[] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:

commitindex  index of highest log entry known to be
committed (initialized to 0, increases.
monotonically)

index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

lastApplied

Volatile state on leaders:

(Reinitialized after election)

nextIndex[] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex|]  for each server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)

RequestVote RPC

Invoked by candidates to gather votes (§5.2).

Arguments:

term candidate’s term

candidateld candidate requesting vote

lastLogIndex  index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)
Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

Invoked by leader to replicate log entries (§5.3); also used as

heartbeat (§5.2).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLogindex  index of log entry immediately preceding
new ones

prevLogTerm  term of prevLogIndex entry

entries|| log entries to store (empty for heartbeat;

may send more than one for efficiency)

AppendEntries RPC

Rules for Servers

All Servers:
. i >

lied: increment pplied, apply
log[lastApplied] to state machine (§5.3)

* If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):

+ Respond to RPCs from candidates and leaders

+ If election timeout elapses without recciving AppendEntrics
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
+ On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
* Reset election timer
+ Send RequestVote RPCs to all other servers
« If votes received from majority of servers: become leader
« If AppendEntries RPC received from new leader: convert to
follower

PRTIR
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Volatile state on leaders:
(Reinitialized after election)

nextIndex|] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex[]  for each server, index of highest log entry

known to be replicated on server
(initialized to 0, increases monotonically)

Tnvoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLogindex  index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries|| log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit  leader’s commitlndex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:
Reply false if term < currentTerm (§5.1)

AppendEntries RPC

AII Servers

increment pplied, apply
lo&,[ld:lApp]led] to state machine (§5.3)
If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):

* Respond to RPCs from candidates and leaders

« If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
* On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
* Reset election timer
+ Send RequestVote RPCs to all other servers
« If votes received from majority of servers: become leader
« If AppendEntries RPC received from new leader: convert to
follower
* If election timeout elapses: start new election

Leaders:

+ Upon election: send initial empty AppendEntries RPCs
(heartbeat) to cach server; repeat during idle peiods to
prevent election timeouts (§5.2)

« If command received from client: append entry to local log,
respond after entry applied to state machine (§5.3)

* Iflast log index = nextIndex for a follower: send

2. Reply false if log doesn’t contain an entry at prevLoglndex AppendEntries RPC with log entries starting at nextIndex
whose term matches prevLogTerm (§5.3) « If successful: update nextindex and matchIndex for

3. Ifan existing entry conflicts with a new one (same index follower (§5.3)
but different terms), delete the existing entry and all that « If AppendEntries fails because of log inconsistency:
follow it (§5.3) decrement nextindex and retry (§5.3)

4. Append any new entries not already in the log « Ifthere exists an N such that N > commitIndex, a majority

5. If leaderCommit > commitIndex, set commitindex = of matchlndex[i] > N, and log[N].term = currentTerm:
‘min(leaderCommit, index of last new entry) set commitindex = N (§5.3, §5.4).

Figure 2: A condensed summary of the Raft consensus algorithm changes and log The server

behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2
indicate where particular features are discussed. A formal specification [311 describes the algorithm more precisely.
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m Leaders get complete responsibility for managing the
replicated log.

m All changes flow from the leader to others.

Subproblems
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m Log replication (5.3)
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Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries
up through the given index. §5.3

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry
at a given index to its state machine, no other server

will ever apply a different log entry for the same index.
§5.4.3
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I—5.1. Raft basics

m Raft cluster contains several servers - e.g. five allows for

two failures.

m Servers are in one of only three states - leader, follower, or
candidate.

m There should only be one leader. Leader handles all client
requests.

m Leaders typically operate until they fail.

m Followers are passive - all client requests are forwarded to
the leader.
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times out,
startsup  times out, new election
starts election

receives votes from
majority of servers

Follower Candidate

discovers current
leader or new term

discovers server
with higher term
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Terms

m A term is arbitrary length.
m Terms are numbered with consecutive integers.

m Terms begin with an election.

m Terms with split-vote elections end with no leader, and a
new term starts.

m Terms form a logical clock and the current term is
exchanged during all communications.

m Stale terms are rejected, new terms are immediately
accepted (reverting to follower state).
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term 1 term 2 term 4

. I 3
4 4 A
\ \ / term:

election normal no emerging
operation leader
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Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

m InstallSnapshot - used for log compaction extension

RPC properties

m RPCs are retried until responses are received.
m RPCs are idempotent.
m RPCs are issued in parallel wherever possible.
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|—5.2. Leader election

m All servers begin as followers.

m Servers stay followers as long as they receive
AppendEntries RPCs heartbeats (whether or not there are
any log entries).

m If a server hears no AppendEntries call before an election
timeout, it begins an election.
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m Follower increments its current term and transitions to
candidate state.

m Votes for itself and requests votes from the other servers.

Election termination

One of three things:

m it wins the election; now it’s the leader
m it finds out about another leader; now it’s a follower

m neither previous case happens before another election
timeout; the election starts over.
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m Winning is assumed if you receive a majority of votes.
m Each follower will vote for at most one candidate per term,
first-come-first-served.

m At any time if any server hears a heartbeat message with a
leader in the current term or newer, it assumes the source
is the leader.

Split votes

Randomized election timeouts!
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Leaders service client requests.
Client request commands are added to the leader’s log.

Leaders then pester followers to add the command to their
logs via AppendEntries.

Entries are identified by their term number and log index.

Entries are uncommitted until the leader has determined
that a majority of servers have the entry.

m AppendEntries calls (including heartbeats) indicate the
highest committed index.

m Committed entries are passed off to each server’s state
machine in order.
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Logs match

m Every log entry is given a term id.

m There is only one leader per term, and leaders never
change log entry indices.

m So, given a term id, the log index is unique.

m AppendEntries includes the previous term id and log index,
so if that log entry is missing, the follower will reject the call.

m The leader will back up and replay the log up to the
offending entry.
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I—5.3. Log replication

Conflict handling

m Leaders force followers logs to duplicate their own.
m Conflicting entries will get overwritten.
m Leaders never overwrite or delete their own entries.
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5.4.1 Election restriction

m A leader will not get voted for if it's missing entries the voter
has.

m Logs are efficiently compared by sorting the 2-tuple (term
id, log index)
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A leader cannot assume an entry that exists on a majority of
servers from a previous term is committed.
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5.4.2 Committing entries from previous terms

12 12 1 2 3 1_2_3
o (2 02 OkE GE
12 02 [O) O3
53 @2} 3]
S5 [1(3] [1]3] 1[3

(a) (b) (c) (d)



Raft

LAlgorilhm

I—5.4. Safety

5.4.3 Safety argument

Proof
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I—5.5. Follower and candidate crashes

m Raft RPCs are idempotent
m Raft retries failed requests indefinitely

m Follower and candidate crashes are trivially handled for
free.



Raft
LAlgorithm

I—5.6. Timing and availability

Algorithm

Algorithm

m 5.6. Timing and availability



Raft
LAlgorilhm

|—5.6. Timing and availability

Timing requirement



Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF



Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF
m broadcastTime and MTBF are usually fixed.



Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF
m broadcastTime and MTBF are usually fixed.

m broadcastTime is usually dominated by disk write time,
since logs are persisted to stable storage.



Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF
m broadcastTime and MTBF are usually fixed.

m broadcastTime is usually dominated by disk write time,
since logs are persisted to stable storage.

m So, electionTimeout is typically between 10ms and 500ms.
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|—6. Cluster membership changes

Overall idea

m Must adhere to one-leader-per-term rule during switch.
m Rules out any direct or atomic configuration switches.

m Two-phase approach uses joint-consensus: for a term the
system uses the union of the two configurations.
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Implementation

m Uses a special configuration log entry. The latest
configuration log entry applies regardless of
committedness.

m Once a configuration is committed it is safe to move to the
next configuration (from joint to new).
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|—6. Cluster membership changes

Issues

m New servers might be incredibly behind - can join as
non-voting members before new configuration is applied

m Current leader might not be part of new configuration -
leaders step down after committing configuration and
possibly shouldn’t count themselves as part of the majority.

m Cluster can be disrupted by old nodes interferring and
becoming candidates - servers can disregard RequestVote
when they believe a leader exists, but it's best to get old
nodes out.
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I—7. Log compaction

Snapshotting

m Requires interaction with state machine and state machine
serialization.

m Snapshot should indicate last included log index.

m InstallSnapshot RPC applies a snapshot to a follower when
the follower is farther behind what the log has.
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Linearizability

Clients must make all operations idempotent, or attach unique
serial numbers to all commands, in case the request is received
but the response is lost.

Read-only ops

m Leaders should know the latest information on what entries
are committed, so at least one heartbeat or operation
needs to have happened when the leader starts.

m Leaders may have gotten deposed, so they need to check
with the cluster before responding to read-only requests.
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9.1. Understandability

m How do you measure understandability?

m You teach two otherwise-identical classes on Paxos and
Raft, and make kids take tests!

m Paxos lecture: http://youtu.be/JEpsBg0AO60
m Raft lecture: http://youtu.be/YbZ3zDzDnrw

m Exams: https://ramcloud.stanford.edu/
~ongaro/userstudy/quizzes.html


http://youtu.be/JEpsBg0AO6o
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How’d they do?
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9.2. Correctness

They wrote proofs! See citations.
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Categories of related work

m Paxos
m Implementations of Paxos

m Implementations of consensus systems (Chubby,
ZooKeeper, Spanner, etc)

m Performance improvements for Paxos

m Viewstamped Replication - similar to Raft, about as old as
Paxos.
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Comparisons

m Raft’s leader-based approach is touted as better than
Paxos (leadership in Paxos is only a performance
optimization)

m VR and ZooKeeper are also leaderbased, but are more
complicated (you can add log entries during elections, etc)

m Raft has less message-types in general.

m Egalitarian Paxos can be faster under certain conditions
due to lack of leader.

m Cluster membership changes have a variety of
approaches, but Raft’s played to its own strengths.
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Load balancing

m Every server must completely manage its own state
machine.

m Every request must go through the leader.
m Doesn’t horizontally scale well.
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m How can you hack a Raft cluster?
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m Distributed Hash Tables

m Consensus algorithms

m Reed Solomon

m Monitoring and sooo much data

m Security and cryptography engineering
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