Utah Distributed Systems Meetup and
Reading Group - Raft

JT Olds

Space Monkey
Vivint R&D

November 18, 2014

Outline

Introduction

Algorithm

Other practical concerns
Paper Conclusion

Raft issues

Raft
leroduction

Outline

Introduction

Raft
leroduction

Introduction

Introduction
m Abstract
m 1. Introduction
m 2. Replicated state machines
m 3. What’s wrong with Paxos?
m 4. Designing for understandability

Raft
leroduction

Nearly all content and images from Diego Ongaro and John
Ousterhout’s 2014 paper, In Search of an Understandable
Consensus Algorithm (Extended Version).

Raft

leroduction

L Abstract

Introduction

Introduction
m Abstract

Raft
leroduction

L Abstract

m Raft is a consensus algorithm for managing a replicated
log.

Raft

L Introduction
I—Abstract

m Raft is a consensus algorithm for managing a replicated
log.

m Equivalent to Paxos in operation, except more
understandable.

Raft

leroduction

L Abstract

m Raft is a consensus algorithm for managing a replicated
log.

m Equivalent to Paxos in operation, except more
understandable.

m Separates leader election, log replication, safety, and
reduces possible states.

Raft

leroduction

L Abstract

m Raft is a consensus algorithm for managing a replicated
log.

m Equivalent to Paxos in operation, except more
understandable.

m Separates leader election, log replication, safety, and
reduces possible states.

m Easier to learn.

Raft
leroduction

L Abstract

m Raft is a consensus algorithm for managing a replicated
log.

m Equivalent to Paxos in operation, except more
understandable.

m Separates leader election, log replication, safety, and
reduces possible states.

m Easier to learn.
m Supports cluster membership changes.

Raft

leroduction

L 1. Introduction

Introduction

Introduction

m 1. Introduction

Raft
leroduction

L 1. Introduction

m Consensus algorithms allow a collection of machines to
work as a coherent group that can survive the failure of
some members.

Raft

leroduction

L 1. Introduction

m Consensus algorithms allow a collection of machines to

work as a coherent group that can survive the failure of
some members.

m Paxos has been the primary consensus algorithm for too
long.

Raft

leroduction

L 1. Introduction

m Consensus algorithms allow a collection of machines to
work as a coherent group that can survive the failure of
some members.

m Paxos has been the primary consensus algorithm for too
long.

m Paxos is difficult to understand and implement.

Raft
leroduction

L 1. Introduction

m Consensus algorithms allow a collection of machines to
work as a coherent group that can survive the failure of
some members.

m Paxos has been the primary consensus algorithm for too
long.

m Paxos is difficult to understand and implement.
m Raft’s key goal is understandability.

Raft
leroduction

L 1. Introduction

Notable raft features

Raft
leroduction

L 1. Introduction

Notable raft features

m Strong leader

Raft
L Introduction

L 1. Introduction

Notable raft features

m Strong leader
m Randomized timeouts for leader election

Raft
L Introduction

L 1. Introduction

Notable raft features

m Strong leader
m Randomized timeouts for leader election
m Membership changes

Raft
leroduction

I—2. Replicated state machines

Introduction

Introduction

m 2. Replicated state machines

Raft
L Introduction

I—2. Replicated state machines

@ r - .
@ (Server State Machine) |||}
Consensus xX: 3
| Module y: 9

z:0

[Log ©)

|X<—3|y<—1 |y<_9||

Raft
leroduction

I—2. Replicated state machines

m State machines must be completely deterministic.

Raft
leroduction

I—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.

Raft
leroduction

I—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Raft
L Introduction

|—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Consensus algorithms

Raft
L Introduction

|—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Consensus algorithms

m should provide safety - never return an incorrect result.

Raft
L Introduction

|—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Consensus algorithms

m should provide safety - never return an incorrect result.

m should provide availability - must work when a majority of
servers are up.

Raft
L Introduction

|—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Consensus algorithms

m should provide safety - never return an incorrect result.

m should provide availability - must work when a majority of
servers are up.

m should not depend on timing.

Raft

leroduclion

|—2. Replicated state machines

m State machines must be completely deterministic.
m State machines operate on events popped from a log.
m Logs are managed by the consensus algorithm.

Consensus algorithms

m should provide safety - never return an incorrect result.

m should provide availability - must work when a majority of
servers are up.

m should not depend on timing.

m can mitigate poor performance. A slow minority shouldn’t
be waited for.

Raft
leroduction

|—3. What's wrong with Paxos?

Introduction

Introduction

m 3. What’s wrong with Paxos?

Raft
L Introduction

|—3. What's wrong with Paxos?

Raft
L Introduction

|—3. What's wrong with Paxos?

m 1970s - Jim Gray and others propose two-phase commit.
Vulnerable to partitions.

Raft
L Introduction

|—3. What's wrong with Paxos?

m 1970s - Jim Gray and others propose two-phase commit.
Vulnerable to partitions.

m 1980s - Three-phase commit. Not provably correct, has
problems.

Raft
L Introduction

|—3. What's wrong with Paxos?

m 1970s - Jim Gray and others propose two-phase commit.
Vulnerable to partitions.

m 1980s - Three-phase commit. Not provably correct, has
problems.

m 1990s - Leslie Lamport tries to prove the properties of
what became Paxos is impossible, comes up with Paxos.

Raft
leroduclion
|—3. What's wrong with Paxos?

Brief aside - part 2

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998
m Paxos made simple - 2001

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998
m Paxos made simple - 2001
m The ABCD’s of Paxos - 2001

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

m Paxos made simple - 2001

m The ABCD’s of Paxos - 2001

m Generalized consensus and Paxos - 2005

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

m Paxos made simple - 2001

m The ABCD’s of Paxos - 2001

m Generalized consensus and Paxos - 2005
m Fast paxos - 2006

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

m Paxos made simple - 2001

m The ABCD'’s of Paxos - 2001

m Generalized consensus and Paxos - 2005

m Fast paxos - 2006

m Paxos made live: an engineering perspective - 2007

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

m Paxos made simple - 2001

m The ABCD'’s of Paxos - 2001

m Generalized consensus and Paxos - 2005

m Fast paxos - 2006

m Paxos made live: an engineering perspective - 2007
m Paxos made practical - 2007

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

m Paxos made simple - 2001

m The ABCD’s of Paxos - 2001

Generalized consensus and Paxos - 2005

Fast paxos - 2006

Paxos made live: an engineering perspective - 2007
Paxos made practical - 2007

Paxos for system builders - 2008

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998
m Paxos made simple - 2001
m The ABCD’s of Paxos - 2001

m Generalized consensus and Paxos - 2005

m Fast paxos - 2006

m Paxos made live: an engineering perspective - 2007
m Paxos made practical - 2007

m Paxos for system builders - 2008

m Paxos made moderately complex - 2012

Raft
L Introduction
|—3. What's wrong with Paxos?

Brief aside - part 2

m The part-time parliament - 1998

m Paxos made simple - 2001

m The ABCD’s of Paxos - 2001

m Generalized consensus and Paxos - 2005

m Fast paxos - 2006

m Paxos made live: an engineering perspective - 2007
m Paxos made practical - 2007

m Paxos for system builders - 2008

[]

[]

Paxos made moderately complex - 2012

In search of an understandable consensus algorithm -
2013

Raft
L Introduction

|—3. What's wrong with Paxos?

Brief aside - part 3

Raft
L Introduction

|—3. What's wrong with Paxos?

Brief aside - part 3

m Go To Statement Considered Harmful - 1968

Raft
L Introduction

|—3. What's wrong with Paxos?

Brief aside - part 3

m Go To Statement Considered Harmful - 1968
m ‘GOTO Considered Harmful’ Considered Harmful - 1987

Raft
L Introduction

|—3. What's wrong with Paxos?

Brief aside - part 3

m Go To Statement Considered Harmful - 1968
m ‘GOTO Considered Harmful’ Considered Harmful - 1987

m "GOTO Considered Harmful" Considered Harmful’
Considered Harmful? - 1987

Raft
L Introduction

|—3. What's wrong with Paxos?

Brief aside - part 3

m Go To Statement Considered Harmful - 1968
m ‘GOTO Considered Harmful’ Considered Harmful - 1987

m "GOTO Considered Harmful" Considered Harmful’
Considered Harmful? - 1987

m On a Somewhat Disappointing Correspondence - 1987

Raft
leroduction

|—3. What's wrong with Paxos?

Paxos is broken into

Raft
L Introduction

|—3. What's wrong with Paxos?

Paxos is broken into

m single-decree Paxos - goal is to replicate one log entry

Raft
L Introduction

|—3. What's wrong with Paxos?

Paxos is broken into

m single-decree Paxos - goal is to replicate one log entry

m multi-Paxos - combines single-decree Paxos to decide a
full log.

Raft
L Introduction

|—3. What's wrong with Paxos?

Raft
leroduclion
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

m Paxos is symmetric peer-to-peer at its core (no leaders)

which is inefficient when a bunch of decisions need to be
made.

Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

m Paxos is symmetric peer-to-peer at its core (no leaders)
which is inefficient when a bunch of decisions need to be
made.

Is this actually a problem? Byzantine empires might say no.

Raft
L Introduction
|—3. What's wrong with Paxos?

Problems?

m super opaque and subtle - probably due to weird
decomposition.

m multi-Paxos only has possible approach sketches!
Attempts to flesh out missing details differ from Lamport’s
sketch and each other, and some have not been published.

m Paxos is symmetric peer-to-peer at its core (no leaders)
which is inefficient when a bunch of decisions need to be
made.

Is this actually a problem? Byzantine empires might say no.

m Paxos is good for proving theorems about Paxos, but said
proofs matter little when real implementations can differ so
drastically.

Raft
leroduction

I—4. Designing for understandability

Introduction

Introduction

m 4. Designing for understandability

Raft
L Introduction

L . Designing for understandability

Raft
L Introduction

I—4. Designing for understandability

Goals

m Reduce developer design work (no unproven protocols)

Raft
L Introduction

I—4. Designing for understandability

Goals

m Reduce developer design work (no unproven protocols)
m Safe under all conditions

Raft
L Introduction

I—4. Designing for understandability

Goals

m Reduce developer design work (no unproven protocols)
m Safe under all conditions
m Available under typical conditions

Raft
L Introduction

I—4. Designing for understandability

Goals

m Reduce developer design work (no unproven protocols)
m Safe under all conditions

m Available under typical conditions

m Efficient for common operations

Raft
L Introduction

I—4. Designing for understandability

Goals

m Reduce developer design work (no unproven protocols)
m Safe under all conditions

m Available under typical conditions

m Efficient for common operations

m Understandable

Raft
L Introduction
I—4. Designing for understandability

Understandability

Raft
L Introduction
I—4. Designing for understandability

Understandability

m When faced with a choice, choose the easiest to explain.

Raft
L Introduction
I—4. Designing for understandability

Understandability

m When faced with a choice, choose the easiest to explain.
m Subdivide problems

Raft
L Introduction
I—4. Designing for understandability

Understandability

m When faced with a choice, choose the easiest to explain.
m Subdivide problems
m Shrink state space

Raft
L Introduction

I—4. Designing for understandability

Understandability

m When faced with a choice, choose the easiest to explain.
m Subdivide problems
m Shrink state space

Nondeterminism

Raft
L Introduction

I—4. Designing for understandability

Understandability

m When faced with a choice, choose the easiest to explain.
m Subdivide problems
m Shrink state space

Nondeterminism

m Nondeterminism usually eliminated

Raft
L Introduction

I—4. Designing for understandability

Understandability

m When faced with a choice, choose the easiest to explain.
m Subdivide problems
m Shrink state space

Nondeterminism

m Nondeterminism usually eliminated

m except where it makes the system simpler! (randomized
approaches)

Raft
LAlgorithm

Outline

Algorithm

Raft
LAlgorilhm

Algorithm

Algorithm
m 5. The Raft consensus algorithm
5.1. Raft basics
5.2. Leader election
5.3. Log replication
5.4. Safety
5.5. Follower and candidate crashes
5.6. Timing and availability

Raft

LAlgorilhm

raftconsensus.github.io

raftconsensus.github.io

Raft
LAlgorithm

I—5. The Raft consensus algorithm

Algorithm

Algorithm
m 5. The Raft consensus algorithm

Raft
LAlgorithm

I—5. The Raft consensus algorithm

Persistent state on all servers:
(Updated on stable storage before responding to RPCs)

currentTerm latest term server has seen (initialized to 0
on first boot, increases monotonically)

votedFor candidateld that received vote in current
term (or null if none)

log[] log entries; each entry contains command

for state machine, and term when entry
was received by leader (first index is 1)

Volatile state on all servers:

commitindex index of highest log entry known to be
committed (initialized to 0, increases.
monotonically)

index of highest log entry applied to state
machine (initialized to 0, increases
monotonically)

lastApplied

Volatile state on leaders:

(Reinitialized after election)

nextIndex[] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex|] for each server, index of highest log entry
known to be replicated on server
(initialized to 0, increases monotonically)

RequestVote RPC

Invoked by candidates to gather votes (§5.2).

Arguments:

term candidate’s term

candidateld candidate requesting vote

lastLogIndex index of candidate’s last log entry (§5.4)
lastLogTerm term of candidate’s last log entry (§5.4)
Results:

term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Receiver implementation:

1. Reply false if term < currentTerm (§5.1)

2. If votedFor is null or candidateld, and candidate’s log is at
least as up-to-date as receiver’s log, grant vote (§5.2, §5.4)

Invoked by leader to replicate log entries (§5.3); also used as

heartbeat (§5.2).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLogindex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries|| log entries to store (empty for heartbeat;

may send more than one for efficiency)

AppendEntries RPC

Rules for Servers

All Servers:
. i >

lied: increment pplied, apply
log[lastApplied] to state machine (§5.3)

* If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):

+ Respond to RPCs from candidates and leaders

+ If election timeout elapses without recciving AppendEntrics
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
+ On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
* Reset election timer
+ Send RequestVote RPCs to all other servers
« If votes received from majority of servers: become leader
« If AppendEntries RPC received from new leader: convert to
follower

PRTIR

Raft
LAlgorithm

I—5. The Raft consensus algorithm

Volatile state on leaders:
(Reinitialized after election)

nextIndex|] for each server, index of the next log entry
to send to that server (initialized to leader
last log index + 1)

matchIndex[] for each server, index of highest log entry

known to be replicated on server
(initialized to 0, increases monotonically)

Tnvoked by leader to replicate log entries (§5.3); also used as
heartbeat (§5.2).

Arguments:

term leader’s term

leaderld so follower can redirect clients

prevLogindex index of log entry immediately preceding
new ones

prevLogTerm term of prevLogIndex entry

entries|| log entries to store (empty for heartbeat;

may send more than one for efficiency)
leaderCommit leader’s commitlndex

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Receiver implementation:
Reply false if term < currentTerm (§5.1)

AppendEntries RPC

AII Servers

increment pplied, apply
lo&,[ld:lApp]led] to state machine (§5.3)
If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower (§5.1)

Followers (§5.2):

* Respond to RPCs from candidates and leaders

« If election timeout elapses without receiving AppendEntries
RPC from current leader or granting vote to candidate:
convert to candidate

Candidates (§5.2):
* On conversion to candidate, start election:
* Increment currentTerm
* Vote for self
* Reset election timer
+ Send RequestVote RPCs to all other servers
« If votes received from majority of servers: become leader
« If AppendEntries RPC received from new leader: convert to
follower
* If election timeout elapses: start new election

Leaders:

+ Upon election: send initial empty AppendEntries RPCs
(heartbeat) to cach server; repeat during idle peiods to
prevent election timeouts (§5.2)

« If command received from client: append entry to local log,
respond after entry applied to state machine (§5.3)

* Iflast log index = nextIndex for a follower: send

2. Reply false if log doesn’t contain an entry at prevLoglndex AppendEntries RPC with log entries starting at nextIndex
whose term matches prevLogTerm (§5.3) « If successful: update nextindex and matchIndex for

3. Ifan existing entry conflicts with a new one (same index follower (§5.3)
but different terms), delete the existing entry and all that « If AppendEntries fails because of log inconsistency:
follow it (§5.3) decrement nextindex and retry (§5.3)

4. Append any new entries not already in the log « Ifthere exists an N such that N > commitIndex, a majority

5. If leaderCommit > commitIndex, set commitindex = of matchlndex[i] > N, and log[N].term = currentTerm:
‘min(leaderCommit, index of last new entry) set commitindex = N (§5.3, §5.4).

Figure 2: A condensed summary of the Raft consensus algorithm changes and log The server

behavior in the upper-left box is described as a set of rules that trigger independently and repeatedly. Section numbers such as §5.2
indicate where particular features are discussed. A formal specification [311 describes the algorithm more precisely.

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

m Leaders get complete responsibility for managing the
replicated log.

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

m Leaders get complete responsibility for managing the
replicated log.

m All changes flow from the leader to others.

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

m Leaders get complete responsibility for managing the
replicated log.

m All changes flow from the leader to others.

Subproblems

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

m Leaders get complete responsibility for managing the
replicated log.

m All changes flow from the leader to others.

Subproblems

m Leader election (5.2)

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

m Leaders get complete responsibility for managing the
replicated log.

m All changes flow from the leader to others.

Subproblems

m Leader election (5.2)
m Log replication (5.3)

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

m Leaders get complete responsibility for managing the
replicated log.

m All changes flow from the leader to others.

Subproblems

m Leader election (5.2)
m Log replication (5.3)
m Safety (5.4)

Raft
LAlgorilhm

I—5. The Raft consensus algorithm

Election Safety: at most one leader can be elected in a
given term. §5.2

Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries. §5.3

Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries
up through the given index. §5.3

Leader Completeness: if a log entry is committed in a
given term, then that entry will be present in the logs
of the leaders for all higher-numbered terms. §5.4

State Machine Safety: if a server has applied a log entry
at a given index to its state machine, no other server

will ever apply a different log entry for the same index.
§5.4.3

Raft

LAlgorithm

I—5.1. Raft basics

Algorithm

Algorithm

m 5.1. Raft basics

Raft

LAlgorithm

I—5.1. Raft basics

m Raft cluster contains several servers - e.g. five allows for
two failures.

Raft

LAlgorilhm

I—5.1. Raft basics

m Raft cluster contains several servers - e.g. five allows for
two failures.

m Servers are in one of only three states - leader, follower, or
candidate.

Raft

LAlgorilhm

I—5.1. Raft basics

m Raft cluster contains several servers - e.g. five allows for
two failures.

m Servers are in one of only three states - leader, follower, or
candidate.

m There should only be one leader. Leader handles all client
requests.

Raft

LAlgorilhm

I—5.1. Raft basics

m Raft cluster contains several servers - e.g. five allows for

two failures.

m Servers are in one of only three states - leader, follower, or
candidate.

m There should only be one leader. Leader handles all client
requests.

m Leaders typically operate until they fail.

Raft

LAlgorilhm

I—5.1. Raft basics

m Raft cluster contains several servers - e.g. five allows for

two failures.

m Servers are in one of only three states - leader, follower, or
candidate.

m There should only be one leader. Leader handles all client
requests.

m Leaders typically operate until they fail.

m Followers are passive - all client requests are forwarded to
the leader.

Raft
LAlgorilhm

I—5.1. Raft basics

times out,
startsup times out, new election
starts election

receives votes from
majority of servers

Follower Candidate

discovers current
leader or new term

discovers server
with higher term

Raft
LAlgorilhm
I—5.1. Raft basics

Raft
LAlgorilhm
I—5.1. Raft basics

Terms

m A term is arbitrary length.

Raft
LAlgorilhm
I—5.1. Raft basics

Terms

m A term is arbitrary length.
m Terms are numbered with consecutive integers.

Raft
LAlgorilhm
I—5.1. Raft basics

Terms

m A term is arbitrary length.
m Terms are numbered with consecutive integers.

m Terms begin with an election.

Raft
LAlgorilhm
I—5.1. Raft basics

Terms

m A term is arbitrary length.
m Terms are numbered with consecutive integers.

m Terms begin with an election.

m Terms with split-vote elections end with no leader, and a
new term starts.

Raft
LAlgorilhm
I—5.1. Raft basics

Terms

m A term is arbitrary length.
m Terms are numbered with consecutive integers.

m Terms begin with an election.

m Terms with split-vote elections end with no leader, and a
new term starts.

m Terms form a logical clock and the current term is
exchanged during all communications.

Raft
LAlgorilhm
I—5.1. Raft basics

Terms

m A term is arbitrary length.
m Terms are numbered with consecutive integers.

m Terms begin with an election.

m Terms with split-vote elections end with no leader, and a
new term starts.

m Terms form a logical clock and the current term is
exchanged during all communications.

m Stale terms are rejected, new terms are immediately
accepted (reverting to follower state).

Raft

LAlgorithm

I—5.1. Raft basics

term 1 term 2 term 4

. I 3
4 4 A
\ \ / term:

election normal no emerging
operation leader

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

m InstallSnapshot - used for log compaction extension

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

m InstallSnapshot - used for log compaction extension

RPC properties

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

m InstallSnapshot - used for log compaction extension

RPC properties

m RPCs are retried until responses are received.

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

m InstallSnapshot - used for log compaction extension

RPC properties

m RPCs are retried until responses are received.
m RPCs are idempotent.

Raft
LAlgorilhm
I—5.1. Raft basics

Only two main RPCs, three if you count log compaction

m RequestVote - initiated by candidates, used during
elections.

m AppendEntries - initiated by leaders for heartbeats and log
replication.

m InstallSnapshot - used for log compaction extension

RPC properties

m RPCs are retried until responses are received.
m RPCs are idempotent.
m RPCs are issued in parallel wherever possible.

Raft

LAlgorithm

I—5.2. Leader election

Algorithm

Algorithm

m 5.2. Leader election

Raft

LAlgorithm

I—5.2. Leader election

m All servers begin as followers.

Raft

LAlgorilhm

I—5.2. Leader election

m All servers begin as followers.

m Servers stay followers as long as they receive
AppendEntries RPCs heartbeats (whether or not there are
any log entries).

Raft

LAlgorilhm

|—5.2. Leader election

m All servers begin as followers.

m Servers stay followers as long as they receive
AppendEntries RPCs heartbeats (whether or not there are
any log entries).

m If a server hears no AppendEntries call before an election
timeout, it begins an election.

Raft
LAlgorilhm
I—5.2. Leader election

Raft
LAlgorilhm
I—5.2. Leader election

m Follower increments its current term and transitions to
candidate state.

Raft
LAlgorilhm
I—5.2. Leader election

m Follower increments its current term and transitions to
candidate state.

m Votes for itself and requests votes from the other servers.

Raft
LAlgorilhm

I—5.2. Leader election

m Follower increments its current term and transitions to
candidate state.

m Votes for itself and requests votes from the other servers.

Election termination

One of three things:

Raft
LAlgorilhm

I—5.2. Leader election

m Follower increments its current term and transitions to
candidate state.

m Votes for itself and requests votes from the other servers.

Election termination

One of three things:

m it wins the election; now it’s the leader

Raft
LAlgorilhm

I—5.2. Leader election

m Follower increments its current term and transitions to
candidate state.

m Votes for itself and requests votes from the other servers.

Election termination

One of three things:

m it wins the election; now it’s the leader
m it finds out about another leader; now it’s a follower

Raft
LAlgorilhm

I—5.2. Leader election

m Follower increments its current term and transitions to
candidate state.

m Votes for itself and requests votes from the other servers.

Election termination

One of three things:

m it wins the election; now it’s the leader
m it finds out about another leader; now it’s a follower

m neither previous case happens before another election
timeout; the election starts over.

Raft
LAlgorilhm

I—5.2. Leader election

Raft
LAlgorilhm
I—5.2. Leader election

m Winning is assumed if you receive a majority of votes.

Raft
LAlgorilhm
I—5.2. Leader election

m Winning is assumed if you receive a majority of votes.

m Each follower will vote for at most one candidate per term,
first-come-first-served.

Raft
LAlgorilhm
I—5.2. Leader election

m Winning is assumed if you receive a majority of votes.
m Each follower will vote for at most one candidate per term,
first-come-first-served.

m At any time if any server hears a heartbeat message with a
leader in the current term or newer, it assumes the source
is the leader.

Raft
LAlgorilhm

I—5.2. Leader election

m Winning is assumed if you receive a majority of votes.
m Each follower will vote for at most one candidate per term,
first-come-first-served.

m At any time if any server hears a heartbeat message with a
leader in the current term or newer, it assumes the source
is the leader.

Split votes

Randomized election timeouts!

Raft
LAlgorilhm

I—5.2. Leader election

times out,
startsup times out, new election
starts election

receives votes from
majority of servers

Follower Candidate

discovers current
leader or new term

discovers server
with higher term

Raft

LAlgorithm

I—5.2. Leader election

term 1 term 2 term 4

. I 3
4 4 A
\ \ / term:

election normal no emerging
operation leader

Raft
LAlgorithm

I—5.3. Log replication

Algorithm

Algorithm

m 5.3. Log replication

Raft
LAlgorilhm

I—5.3. Log replication

1 2 3 4 5 6 7 8
1 1 1 2 3 3 3 3
X3 yelly«9|xe«2|x<0]|y<7|x<5]|x<4

1 1 1 2 3
Xe3|yel|ye«9|xe<2|x<0
1 1 1 2 3 3 3 3
X3 yellye9|xe2|xe<0]|y«7| x5 x4
1 1
Xe<3|y<1
1 1 1 2 3 3 3
X3 yellye9xe«2|x<0|y<7|x<5

x

committed entries

X

log index

leader

> followers

Raft
LAlgorithm

I—5.3. Log replication

m Leaders service client requests.

Raft
LAlgorithm

I—5.3. Log replication

m Leaders service client requests.
m Client request commands are added to the leader’s log.

Raft
LAlgorilhm

|—5.3. Log replication

m Leaders service client requests.
m Client request commands are added to the leader’s log.

m Leaders then pester followers to add the command to their
logs via AppendEntries.

Raft
LAlgorilhm

|—5.3. Log replication

m Leaders service client requests.
m Client request commands are added to the leader’s log.

m Leaders then pester followers to add the command to their
logs via AppendEntries.

m Entries are identified by their term number and log index.

Raft
LAlgorilhm

|—5.3. Log replication

Leaders service client requests.
Client request commands are added to the leader’s log.

Leaders then pester followers to add the command to their
logs via AppendEntries.

Entries are identified by their term number and log index.

Entries are uncommitted until the leader has determined
that a majority of servers have the entry.

Raft
LAlgorilhm

I—5.3. Log replication

Leaders service client requests.
Client request commands are added to the leader’s log.

Leaders then pester followers to add the command to their
logs via AppendEntries.

Entries are identified by their term number and log index.

Entries are uncommitted until the leader has determined
that a majority of servers have the entry.

AppendEntries calls (including heartbeats) indicate the
highest committed index.

Raft
LAlgorilhm

I—5.3. Log replication

Leaders service client requests.
Client request commands are added to the leader’s log.

Leaders then pester followers to add the command to their
logs via AppendEntries.

Entries are identified by their term number and log index.

Entries are uncommitted until the leader has determined
that a majority of servers have the entry.

m AppendEntries calls (including heartbeats) indicate the
highest committed index.

m Committed entries are passed off to each server’s state
machine in order.

Raft
LAlgorilhm
|—5.3. Log replication

Logs match

Raft
LAlgorilhm
|—5.3. Log replication

Logs match

m Every log entry is given a term id.

Raft
LAlgorilhm
|—5.3. Log replication

Logs match

m Every log entry is given a term id.

m There is only one leader per term, and leaders never
change log entry indices.

Raft
LAlgorilhm
|—5.3. Log replication

Logs match

m Every log entry is given a term id.

m There is only one leader per term, and leaders never
change log entry indices.

m So, given a term id, the log index is unique.

Raft
LAlgorilhm
|—5.3. Log replication

Logs match

m Every log entry is given a term id.

m There is only one leader per term, and leaders never
change log entry indices.

m So, given a term id, the log index is unique.

m AppendEntries includes the previous term id and log index,
so if that log entry is missing, the follower will reject the call.

Raft
LAlgorilhm
|—5.3. Log replication

Logs match

m Every log entry is given a term id.

m There is only one leader per term, and leaders never
change log entry indices.

m So, given a term id, the log index is unique.

m AppendEntries includes the previous term id and log index,
so if that log entry is missing, the follower will reject the call.

m The leader will back up and replay the log up to the
offending entry.

Raft
LAlgorilhm

|—5.3. Log replication

12345678 9101112
[1]1]1[4[4[5[5[6[6]6]

(

Q

) [1[1]1[4]4]5]5]6]6]

)

) (1]1]1]4]4]5[5]6]6]6]6]

) [1[1]1]4][4]5]5]6]6[6][7]7]
e [1]1]1]4]4]4]4]
 [1]1]1]2]2]2[3]3]3][3]3]

o

(

(

0

(

o

)

'

log index

leader for
term 8

possible
followers

Raft
LAlgorilhm

I—5.3. Log replication

Conflict handling

Raft
LAlgorilhm

I—5.3. Log replication

Conflict handling

m Leaders force followers logs to duplicate their own.

Raft
LAlgorilhm

I—5.3. Log replication

Conflict handling

m Leaders force followers logs to duplicate their own.
m Conflicting entries will get overwritten.

Raft
LAlgorilhm

I—5.3. Log replication

Conflict handling

m Leaders force followers logs to duplicate their own.
m Conflicting entries will get overwritten.
m Leaders never overwrite or delete their own entries.

Raft
LAlgorithm

I—5.3. Log replication

Whoa?!

Raft
LAlgorithm

I—5.4. Safety

Algorithm

Algorithm

m 5.4. Safety

Raft
LAlgorilhm

I—5.4. Safety

5.4.1 Election restriction

Raft
LAlgorilhm

I—5.4. Safety

5.4.1 Election restriction

m A leader will not get voted for if it's missing entries the voter
has.

Raft
LAlgorilhm

I—5.4. Safety

5.4.1 Election restriction

m A leader will not get voted for if it's missing entries the voter
has.

m Logs are efficiently compared by sorting the 2-tuple (term
id, log index)

Raft
LAlgorilhm
I—5.4. Safety

5.4.2 Committing entries from previous terms

A leader cannot assume an entry that exists on a majority of
servers from a previous term is committed.

Raft
LAlgorilhm

I—5.4. Safety

5.4.2 Committing entries from previous terms

12 12 1 2 3 1_2_3
o (2 02 OkE GE
12 02 [O) O3
53 @2} 3]
S5 [1(3] [1]3] 1[3

(a) (b) (c) (d)

Raft

LAlgorilhm

I—5.4. Safety

5.4.3 Safety argument

Proof

Raft

LAlgorithm

I—5.5. Follower and candidate crashes

Algorithm

Algorithm

m 5.5. Follower and candidate crashes

Raft

LAlgorithm

I—5.5. Follower and candidate crashes

m Raft RPCs are idempotent

Raft

LAlgorithm

I—5.5. Follower and candidate crashes

m Raft RPCs are idempotent
m Raft retries failed requests indefinitely

Raft

LAlgorithm

I—5.5. Follower and candidate crashes

m Raft RPCs are idempotent
m Raft retries failed requests indefinitely

m Follower and candidate crashes are trivially handled for
free.

Raft
LAlgorithm

I—5.6. Timing and availability

Algorithm

Algorithm

m 5.6. Timing and availability

Raft
LAlgorilhm

|—5.6. Timing and availability

Timing requirement

Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF

Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF
m broadcastTime and MTBF are usually fixed.

Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF
m broadcastTime and MTBF are usually fixed.

m broadcastTime is usually dominated by disk write time,
since logs are persisted to stable storage.

Raft
LAlgorilhm

L 5.6. Timing and availability

Timing requirement

m broadcastTime << electionTimeout << MTBF
m broadcastTime and MTBF are usually fixed.

m broadcastTime is usually dominated by disk write time,
since logs are persisted to stable storage.

m So, electionTimeout is typically between 10ms and 500ms.

Raft

LAlgorilhm

|—5.6. Timing and availability

raftconsensus.github.io

raftconsensus.github.io

Raft

LOther practical concerns

Outline

Other practical concerns

Raft
LOther practical concerns

Other practical concerns

Other practical concerns
m 6. Cluster membership changes
m 7. Log compaction
m 8. Client interaction

Raft

LOther practical concerns

|—6. Cluster membership changes

Other practical concerns

Other practical concerns
m 6. Cluster membership changes

Raft

LOther practical concerns

|—6. Cluster membership changes

Overall idea

Raft

LOther practical concerns

|—6. Cluster membership changes

Overall idea

m Must adhere to one-leader-per-term rule during switch.

Raft

LOther practical concerns

|—6. Cluster membership changes

Overall idea

m Must adhere to one-leader-per-term rule during switch.
m Rules out any direct or atomic configuration switches.

Raft

LOther practical concerns

|—6. Cluster membership changes

Overall idea

m Must adhere to one-leader-per-term rule during switch.
m Rules out any direct or atomic configuration switches.

m Two-phase approach uses joint-consensus: for a term the
system uses the union of the two configurations.

Raft

LOther practical concerns

|—6. Cluster membership changes

Raft

LOther practical concerns

|—6. Cluster membership changes

Implementation

m Uses a special configuration log entry. The latest
configuration log entry applies regardless of
committedness.

Raft

LOther practical concerns
|—6. Cluster membership changes

Implementation

m Uses a special configuration log entry. The latest
configuration log entry applies regardless of
committedness.

m Once a configuration is committed it is safe to move to the
next configuration (from joint to new).

Raft

LOther practical concerns

|—6. Cluster membership changes

Raft
LOther practical concerns

|—6. Cluster membership changes

Issues

m New servers might be incredibly behind - can join as
non-voting members before new configuration is applied

Raft
LOther practical concerns

|—6. Cluster membership changes

Issues

m New servers might be incredibly behind - can join as
non-voting members before new configuration is applied
m Current leader might not be part of new configuration -

leaders step down after committing configuration and
possibly shouldn’t count themselves as part of the majority.

Raft
LOther practical concerns

|—6. Cluster membership changes

Issues

m New servers might be incredibly behind - can join as
non-voting members before new configuration is applied

m Current leader might not be part of new configuration -
leaders step down after committing configuration and
possibly shouldn’t count themselves as part of the majority.

m Cluster can be disrupted by old nodes interferring and
becoming candidates - servers can disregard RequestVote
when they believe a leader exists, but it's best to get old
nodes out.

Raft

LOther practical concerns

I—7. Log compaction

Other practical concerns

Other practical concerns

m 7. Log compaction

Raft

LOther practical concerns

I—7. Log compaction

Snapshotting

Raft

LOther practical concerns

I—7. Log compaction

Snapshotting

m Requires interaction with state machine and state machine
serialization.

Raft

LOther practical concerns

I—7. Log compaction

Snapshotting

m Requires interaction with state machine and state machine
serialization.

m Snapshot should indicate last included log index.

Raft

LOther practical concerns

I—7. Log compaction

Snapshotting

m Requires interaction with state machine and state machine
serialization.

m Snapshot should indicate last included log index.

m InstallSnapshot RPC applies a snapshot to a follower when
the follower is farther behind what the log has.

Raft

LOther practical concerns

|—8. Client interaction

Other practical concerns

Other practical concerns

m 8. Client interaction

Raft
LOther practical concerns

|—8. Client interaction

Linearizability

Clients must make all operations idempotent, or attach unique
serial numbers to all commands, in case the request is received
but the response is lost.

Raft

LOther practical concerns

|—8. Client interaction

Linearizability

Clients must make all operations idempotent, or attach unique
serial numbers to all commands, in case the request is received
but the response is lost.

Read-only ops

Raft

LOther practical concerns

|—8. Client interaction

Linearizability

Clients must make all operations idempotent, or attach unique
serial numbers to all commands, in case the request is received
but the response is lost.

Read-only ops

m Leaders should know the latest information on what entries
are committed, so at least one heartbeat or operation
needs to have happened when the leader starts.

Raft

LOther practical concerns

|—8. Client interaction

Linearizability

Clients must make all operations idempotent, or attach unique
serial numbers to all commands, in case the request is received
but the response is lost.

Read-only ops

m Leaders should know the latest information on what entries
are committed, so at least one heartbeat or operation
needs to have happened when the leader starts.

m Leaders may have gotten deposed, so they need to check
with the cluster before responding to read-only requests.

Raft

LPaper Conclusion

Outline

Paper Conclusion

Raft
LPaper Conclusion

Paper Conclusion

Paper Conclusion
m 9. Implementation and evaluation
m 10. Related work
m 11, 12. Conclusion & Acknowledgements

Raft

LPaper Conclusion

|—9. Implementation and evaluation

Paper Conclusion

Paper Conclusion
m 9. Implementation and evaluation

Raft
LPaper Conclusion

|—9. Implementation and evaluation

9.1. Understandability

http://youtu.be/JEpsBg0AO6o
http://youtu.be/YbZ3zDzDnrw
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html

Raft
LPaper Conclusion

|—9. Implementation and evaluation

9.1. Understandability

m How do you measure understandability?

http://youtu.be/JEpsBg0AO6o
http://youtu.be/YbZ3zDzDnrw
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html

Raft
LPaper Conclusion

|—9. Implementation and evaluation

9.1. Understandability

m How do you measure understandability?

m You teach two otherwise-identical classes on Paxos and
Raft, and make kids take tests!

http://youtu.be/JEpsBg0AO6o
http://youtu.be/YbZ3zDzDnrw
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html

Raft
LPaper Conclusion

|—9. Implementation and evaluation

9.1. Understandability

m How do you measure understandability?

m You teach two otherwise-identical classes on Paxos and
Raft, and make kids take tests!

m Paxos lecture: http://youtu.be/JEpsBg0AO60

http://youtu.be/JEpsBg0AO6o
http://youtu.be/YbZ3zDzDnrw
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html

Raft
LPaper Conclusion

|—9. Implementation and evaluation

9.1. Understandability

m How do you measure understandability?

m You teach two otherwise-identical classes on Paxos and
Raft, and make kids take tests!

m Paxos lecture: http://youtu.be/JEpsBg0AO60
m Raft lecture: http://youtu.be/YbZ3zDzDnrw

http://youtu.be/JEpsBg0AO6o
http://youtu.be/YbZ3zDzDnrw
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html

Raft
LPaper Conclusion

|—9. Implementation and evaluation

9.1. Understandability

m How do you measure understandability?

m You teach two otherwise-identical classes on Paxos and
Raft, and make kids take tests!

m Paxos lecture: http://youtu.be/JEpsBg0AO60
m Raft lecture: http://youtu.be/YbZ3zDzDnrw

m Exams: https://ramcloud.stanford.edu/
~ongaro/userstudy/quizzes.html

http://youtu.be/JEpsBg0AO6o
http://youtu.be/YbZ3zDzDnrw
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html
https://ramcloud.stanford.edu/~ongaro/userstudy/quizzes.html

Raft

LPaper Conclusion

|—9. Implementation and evaluation

How’d they do?

60 T T T T T
50 1
+
+ + % @
() 40 ++ | §
R x X+ x] mm Paxos much easier
B x'k + 5 1 Paxos somewhat easiel
> 30 | B o 3 Roughly equal
% % + S I Raft somewhat easier
i P 3 == Raft much easier
+ €
20 x x 1 5
X x % B
imnlemant exnlain
10 | 1
% HX Raft then Paxos +
Paxos then Raft x
0 L L s L |

0 10 20 30 40 50 60
Paxos grade

Raft

LPaper Conclusion

|—9. Implementation and evaluation

9.2. Correctness

They wrote proofs! See citations.

Raft

LPaper Conclusion

|—9. Implementation and evaluation

9.3. Performance

‘E B
[0
o
@
a -
g 150-150ms -
3 150-151ms |
g 150-156ms -
5 50-175ms |
) 50-200ms
../ 150-300ms -------]
10000 100000
100% , , ! _
€
3 80%]
@
g 60% 1
5 12-24ms - - -~ -
g o 25-50ms ---coce- g
50-100ms
g 2o 100-200ms 1
T | 150-300ms ------- |

300 400 500 600
time without leader (ms)

Raft

LPaper Conclusion

L 10. Related work

Paper Conclusion

Paper Conclusion

m 10. Related work

Raft
LPaper Conclusion
L 10. Related work

Categories of related work

Raft
LPaper Conclusion
L 10. Related work

Categories of related work

m Paxos

Raft
LPaper Conclusion
L 10. Related work

Categories of related work

m Paxos
m Implementations of Paxos

Raft
LPaper Conclusion
I—10. Related work

Categories of related work

m Paxos
m Implementations of Paxos

m Implementations of consensus systems (Chubby,
ZooKeeper, Spanner, etc)

Raft
LPaper Conclusion
L 10. Related work

Categories of related work

m Paxos
m Implementations of Paxos

m Implementations of consensus systems (Chubby,
ZooKeeper, Spanner, etc)

m Performance improvements for Paxos

Raft
LPaper Conclusion
L 10. Related work

Categories of related work

m Paxos
m Implementations of Paxos

m Implementations of consensus systems (Chubby,
ZooKeeper, Spanner, etc)

m Performance improvements for Paxos

m Viewstamped Replication - similar to Raft, about as old as
Paxos.

Raft
LPaper Conclusion
L 10. Related work

Comparisons

Raft
LPaper Conclusion
L 10. Related work

Comparisons

m Raft’s leader-based approach is touted as better than
Paxos (leadership in Paxos is only a performance
optimization)

Raft
LPaper Conclusion
L 10. Related work

Comparisons

m Raft’s leader-based approach is touted as better than
Paxos (leadership in Paxos is only a performance
optimization)

m VR and ZooKeeper are also leaderbased, but are more
complicated (you can add log entries during elections, etc)

Raft
LPaper Conclusion
L 10. Related work

Comparisons

m Raft’s leader-based approach is touted as better than
Paxos (leadership in Paxos is only a performance
optimization)

m VR and ZooKeeper are also leaderbased, but are more
complicated (you can add log entries during elections, etc)

m Raft has less message-types in general.

Raft
L Paper Conclusion
L 10. Related work

Comparisons

m Raft’s leader-based approach is touted as better than
Paxos (leadership in Paxos is only a performance
optimization)

m VR and ZooKeeper are also leaderbased, but are more
complicated (you can add log entries during elections, etc)

m Raft has less message-types in general.

m Egalitarian Paxos can be faster under certain conditions
due to lack of leader.

Raft
L Paper Conclusion
L 10. Related work

Comparisons

m Raft’s leader-based approach is touted as better than
Paxos (leadership in Paxos is only a performance
optimization)

m VR and ZooKeeper are also leaderbased, but are more
complicated (you can add log entries during elections, etc)

m Raft has less message-types in general.

m Egalitarian Paxos can be faster under certain conditions
due to lack of leader.

m Cluster membership changes have a variety of
approaches, but Raft’s played to its own strengths.

Raft

LPaper Conclusion

I—11, 12. Conclusion & Acknowledgements

Paper Conclusion

Paper Conclusion

m 11, 12. Conclusion & Acknowledgements

Raft
L Raft issues

Outline

Raft issues

Raft
L Raft issues

Raft issues

Raft issues

Raft
L Raft issues

Load balancing

Raft
L Raft issues

Load balancing

m Every server must completely manage its own state
machine.

Raft
L Raft issues

Load balancing

m Every server must completely manage its own state
machine.

m Every request must go through the leader.

Raft
L Raft issues

Load balancing

m Every server must completely manage its own state
machine.

m Every request must go through the leader.
m Doesn’t horizontally scale well.

Raft
L Raft issues

Byzantine failures

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

m You trust all your servers, but they’re on an insecure
network.

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

m You trust all your servers, but they’re on an insecure
network.

m You don’t trust some of your servers.

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

m You trust all your servers, but they’re on an insecure
network.

m You don’t trust some of your servers.
m You don't trust all of your servers.

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

m You trust all your servers, but they’re on an insecure
network.

m You don’t trust some of your servers.
m You don't trust all of your servers.
m Bitcoin comparison?

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

m You trust all your servers, but they’re on an insecure
network.

m You don’t trust some of your servers.
m You don't trust all of your servers.
m Bitcoin comparison?

Discussion

Raft
L Raft issues

Byzantine failures

m You trust all your servers, but one gets hacked.

m You trust all your servers, but they’re on an insecure
network.

m You don’t trust some of your servers.
m You don't trust all of your servers.
m Bitcoin comparison?

Discussion

m How can you hack a Raft cluster?

Raft
L Raft issues

Other problems?

Raft
L Raft issues

Other problems?

m Can Raft be made to work in a distributed system when
peers are constantly leaving and joining?

Raft
L Raft issues

Other problems?

m Can Raft be made to work in a distributed system when
peers are constantly leaving and joining?

m Anything else?

Raft

L Meetup Wrap-up

L Shameless plug

Space

MONKEY

Raft
L Meetup Wrap-up

L Shameless plug

Space Monkey!

m Distributed Hash Tables

m Consensus algorithms

m Reed Solomon

m Monitoring and sooo much data

m Security and cryptography engineering

Raft
L Meetup Wrap-up

L Shameless plug

Space Monkey!

Come work with us!

	Introduction
	Algorithm
	Other practical concerns
	Paper Conclusion
	Raft issues

